Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Nucleic Acids Res ; 51(6): 2529-2573, 2023 04 11.
Article in English | MEDLINE | ID: covidwho-20235160

ABSTRACT

Eighteen nucleic acid therapeutics have been approved for treatment of various diseases in the last 25 years. Their modes of action include antisense oligonucleotides (ASOs), splice-switching oligonucleotides (SSOs), RNA interference (RNAi) and an RNA aptamer against a protein. Among the diseases targeted by this new class of drugs are homozygous familial hypercholesterolemia, spinal muscular atrophy, Duchenne muscular dystrophy, hereditary transthyretin-mediated amyloidosis, familial chylomicronemia syndrome, acute hepatic porphyria, and primary hyperoxaluria. Chemical modification of DNA and RNA was central to making drugs out of oligonucleotides. Oligonucleotide therapeutics brought to market thus far contain just a handful of first- and second-generation modifications, among them 2'-fluoro-RNA, 2'-O-methyl RNA and the phosphorothioates that were introduced over 50 years ago. Two other privileged chemistries are 2'-O-(2-methoxyethyl)-RNA (MOE) and the phosphorodiamidate morpholinos (PMO). Given their importance in imparting oligonucleotides with high target affinity, metabolic stability and favorable pharmacokinetic and -dynamic properties, this article provides a review of these chemistries and their use in nucleic acid therapeutics. Breakthroughs in lipid formulation and GalNAc conjugation of modified oligonucleotides have paved the way to efficient delivery and robust, long-lasting silencing of genes. This review provides an account of the state-of-the-art of targeted oligo delivery to hepatocytes.


Subject(s)
Oligonucleotides, Antisense , Humans , Morpholinos/pharmacology , Muscular Dystrophy, Duchenne/drug therapy , Muscular Dystrophy, Duchenne/genetics , Oligonucleotides, Antisense/chemistry , Oligonucleotides, Antisense/metabolism , Oligonucleotides, Antisense/therapeutic use , RNA/chemistry , RNA Interference
2.
Clin Pharmacol Ther ; 111(4): 799-806, 2022 04.
Article in English | MEDLINE | ID: covidwho-1626126

ABSTRACT

Global regulatory agencies have transformed their approach to approvals in their processes for formal review of the safety and efficacy of new drugs. Opportunities for innovation have expanded because of the coronavirus disease 2019 (COVID-19) pandemic. Several regulatory-led initiatives have progressed rapidly during the past year, including patient-focused drug development, model-informed drug development, real-world evidence, and complex innovative trial designs. Collectively, these initiatives have accelerated the rate of approvals. Despite demands to focus on urgent needs imposed by the COVID-19 pandemic, the number of new drug approvals over the past year, particularly for rare diseases, has outpaced expectations. Advancing therapeutics for nervous system disorders requires adaptive strategies that align with rapid developments in the field. Three relentlessly progressive diseases, amyotrophic lateral sclerosis, Duchenne muscular dystrophy, and Parkinson's disease are in urgent need of new treatments. Herein, we propose new regulatory initiatives, including innovative trial designs and patient-focused drug development that accelerate clinical trial conduct while meeting critical regulatory requirements for therapeutic approval.


Subject(s)
COVID-19 Drug Treatment , Muscular Dystrophy, Duchenne , Drug Approval , Humans , Muscular Dystrophy, Duchenne/drug therapy , Orphan Drug Production , Pandemics , Rare Diseases/drug therapy
3.
Nat Commun ; 12(1): 4396, 2021 07 20.
Article in English | MEDLINE | ID: covidwho-1387353

ABSTRACT

Rapid development of antisense therapies can enable on-demand responses to new viral pathogens and make personalized medicine for genetic diseases practical. Antisense phosphorodiamidate morpholino oligomers (PMOs) are promising candidates to fill such a role, but their challenging synthesis limits their widespread application. To rapidly prototype potential PMO drug candidates, we report a fully automated flow-based oligonucleotide synthesizer. Our optimized synthesis platform reduces coupling times by up to 22-fold compared to previously reported methods. We demonstrate the power of our automated technology with the synthesis of milligram quantities of three candidate therapeutic PMO sequences for an unserved class of Duchenne muscular dystrophy (DMD). To further test our platform, we synthesize a PMO that targets the genomic mRNA of SARS-CoV-2 and demonstrate its antiviral effects. This platform could find broad application not only in designing new SARS-CoV-2 and DMD antisense therapeutics, but also for rapid development of PMO candidates to treat new and emerging diseases.


Subject(s)
Chemistry Techniques, Synthetic/instrumentation , Chemistry, Pharmaceutical/instrumentation , High-Throughput Screening Assays/instrumentation , Morpholinos/chemical synthesis , Oligonucleotides, Antisense/chemical synthesis , Animals , COVID-19/virology , Chlorocebus aethiops , Communicable Diseases, Emerging/drug therapy , Communicable Diseases, Emerging/microbiology , Disease Models, Animal , High-Throughput Screening Assays/methods , Humans , Morpholinos/pharmacology , Morpholinos/therapeutic use , Muscular Dystrophy, Duchenne/drug therapy , Muscular Dystrophy, Duchenne/genetics , Oligonucleotides, Antisense/pharmacology , Oligonucleotides, Antisense/therapeutic use , Precision Medicine/methods , RNA, Messenger/antagonists & inhibitors , RNA, Viral/antagonists & inhibitors , SARS-CoV-2/genetics , Time Factors , Vero Cells , COVID-19 Drug Treatment
4.
Neuromuscul Disord ; 31(7): 603-606, 2021 07.
Article in English | MEDLINE | ID: covidwho-1246096

ABSTRACT

Due to their frailty and cardiorespiratory compromise adults with DMD are considered extremely vulnerable and at high risk of severe infection should they contract COVID-19. We report 7 adults with DMD aged 17-26 years who tested positive on a nasopharyngeal PCR swab for SARS-CoV-2. Despite long term corticosteroid treatment, severe respiratory compromise requiring night-time ventilation and receiving treatment for moderate to severe cardiomyopathy, none of the patients developed moderate to severe symptoms; in fact two remained asymptomatic and two developed only anosmia and reduced sensation. The remaining three developed transient fever with or without sore throat, cough and runny nose. All recovered fully without complication and no patient required hospitalization.


Subject(s)
COVID-19/physiopathology , Muscular Dystrophy, Duchenne/physiopathology , Adolescent , Adrenal Cortex Hormones/therapeutic use , Adult , COVID-19/diagnosis , COVID-19/epidemiology , Comorbidity , Humans , Male , Muscular Dystrophy, Duchenne/drug therapy , Muscular Dystrophy, Duchenne/epidemiology , Retrospective Studies , Tertiary Care Centers , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL